
Information supremacy wins wars.
Warfare has always required sharing the

right information with the right person at
the right time. Technology today enables
information sharing on a scale well beyond
what our forefathers imagined, but sharing
information with the wrong individuals can
have catastrophic consequences.

Secure information sharing is critical to
enable and protect the warfighter without
compromising the mission. The challenge
is that warfighter-crucial information is
highly diverse. Initiatives such as Network-
Centric Warfare, System of Systems, and
the Global Information Grid strengthen
the desire to share information with multi-
ple levels of security (MLS). MLS systems
have historically been among the most chal-
lenging and expensive systems to develop
and deploy [1]. Sharing and separating
information in coalition force operations is
an equally challenging and further compli-
cating problem.

Multiple Independent Levels of Security
(MILS) is an architecture that makes devel-
opment, accreditation, and deployment of
MLS-capable systems more practical,
achievable, and affordable. The MILS
architecture significantly increases protec-
tion, reduces time to develop, and reduces
schedule risk of deploying technology to
provide high-assurance systems that are
both safe and secure [1].

While the MILS architecture allows for
a system of highly secure distributed com-
ponents, it does not automatically guaran-
tee a secure composed system out of inde-
pendent secure components. System-wide
security is still up to the system designer
with MILS providing the building blocks
and tools needed to construct a system-
level security policy that can then be veri-

fied. There are tools, e.g., Boundary Flow
Modeling [2], for assuring that security poli-
cies compose for a given system.

Where We Have Been
In almost all commercial off-the-shelf
(COTS) operating systems and communica-
tions technologies, security is an after-
thought, addressed via a fail-first, patch-later
paradigm. When a system is penetrated,
fixes are then pursued to plug the hole.
After a new virus propagates, the enabling
weakness is repaired to stop further infec-
tion. The frail approach of attempting
repair of infected systems is also common.
Damage is frequently not detectable or
repairable in systems with weak security
foundations. Fail-first, patch-later is inap-
propriate for any mission-critical system
because it is reactive and always one step
behind the attacker. In mission-critical sys-
tems, damage must be avoided or bounded
when impossible to avoid. Proactive meas-
ures are required to safeguard information
and the warfighter, and prevent the damage
from happening in the first place.

In traditional architectures, there were
good reasons to assign all policy enforce-
ment to a monolithic security kernel. To
ensure that enforcement was non-bypass-
able, security functions had to be part of
every system service request. To ensure that
enforcement was tamper-proof, security
functions had to be in an address space sep-
arate from the application [3]. These securi-
ty functions needed to be in a monolithic
security kernel since the computing power
of two decades ago was not sufficient to
perform the context switches required to
separate all of these processes and data and
still maintain system performance.

The security kernel with its set of trust-

ed security functions often produced large,
complex, unstructured programs that were
difficult to certify at the higher assurance
levels [4]. SCOMP, which managed to
achieve the highest A1 security rating via
the historic “Orange Book” [5]1, was based
on a very simple security kernel [3]. Most
security kernel-based systems never
achieved the highest level of certification,
which required formal verification. The
Motorola Network Encryption System that
handled MLS data through encryption
achieved a much lower B2 rating, and the
XTS-300, the successor to SCOMP, was
certified at a B3 rating [3].

Aside from the difficulty of certifying
systems with complex, monolithic kernels,
the more important problem is in trying to
enforce a single, system-wide security poli-
cy. For example, Blacker, which successful-
ly handled encryption of MLS data, could
not successfully accommodate administra-
tive traffic within its model of classification
levels [3]. In general, security policies in the
kernel did not provide the robustness
required for many applications where appli-
cation-specific security policies would have
provided more tightly focused protection.

Where We Are Going
MILS was created to enable application-
level security engineering at a high level of
assurance while being affordable. MILS
takes advantage of Moore’s Law’s [6] per-
formance increases over the last two
decades by layering small, formally mod-
eled and mathematically verified com-
ponents together to create a high-assurance
foundation. In MILS, applications are
empowered to enforce their own security
policies instead of relying on generalized
kernel security services. MILS also enables
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efficient systems engineering, where high-
assurance components can be effectively
reused without modification. This lowers
certification costs since certification arti-
facts can be reused.

The concept of MILS originated in
papers written by John Rushby, Ph.D, of
the Stanford Research Institute in the early
1980s [7, 8]. Rushby proposed that a sepa-
ration kernel divide memory into partitions
using the hardware memory management
unit and allow only carefully controlled
communications between non-kernel parti-
tions. This allows one partition to provide a
service to another with minimal interven-
tion from the kernel [7].

Traditional operating system services
that previously ran in privileged (i.e., super-
visor) mode such as device drivers, file sys-
tems, network stacks, etc., now run in non-
privileged (i.e., user) mode. Because a sepa-
ration kernel provides very specific func-
tionality, the security policies that must be
enforced at this level are relatively simple.
The primary concerns of a separation ker-
nel are the partitioning of processes and
data plus the containment of systemwide
failures. Consequently, we can capture the
security requirements for a separation ker-
nel by four foundational security policies:
• Data Isolation. Information in a parti-

tion is accessible only by that partition,
and private data remains private.

• Control of Information Flow. Infor-
mation flow from one partition to
another is from an authenticated source
to authenticated recipients; the source
of information is authenticated to the
recipient, and information goes only
where intended.

• Periods Processing. The microproces-
sor and any networking equipment can-
not be used as a covert channel to leak
information to listening third parties.

• Fault Isolation. Damage is limited by
preventing a failure in one partition
from cascading to any other partition.
Failures are detected, contained, and
recovered locally.
The resultant kernel is now much small-

er and simpler, and conducive to rigorous
inspection and mathematical proof of cor-
rectness by techniques such as formal
methods. This size reduction is an instanti-
ation of MILS’s most fundamental benefit:
Dramatically reduce the amount of security-critical
code so that we can dramatically increase the level of
rigor when we inspect that code. If we are doing
very few things, we should be able to do
them very well, so well, in fact, that the
code can be trusted to protect our most valu-
able data under the highest level of threat.

MILS middleware is an expansive con-
cept with a very broad user-mode layer. It

contains many operating system services
such as device drivers that previously ran in
privileged mode. Running in user mode,
they are subject to the kernel’s security pol-
icy enforcement. MILS middleware also
includes functions traditionally thought of
as being one level removed from the core
operating system: file systems, network
stacks, common libraries, encryption,
authentication, etc. MILS middleware also
includes traditional application-level mid-
dleware technologies such as Common
Object Request Broker Architecture
(CORBA) [8], Data Distribution Service
(DDS), Web services, etc. MILS middle-
ware resides in the same user-mode parti-
tion as the application that it supports or in
protected user-mode partitions by itself.

Applications do their processing and
enforce their own security policies in user-mode
partitions. Applications running in their
partitions can only access the memory that
has been explicitly allocated for each parti-
tion. Application partitions can only com-
municate with each other through paths
that have been configured when the sys-
tem was generated. Under no circum-
stances may application partitions access
hardware directly unless explicitly author-
ized to do so. The MILS architecture, along
with a notional set of allowable informa-
tion flows, is illustrated in Figure 1.

Why is application-level security-policy
enforcement effective in MILS when it was
not effective by itself in traditional mono-
lithic architectures? It is because the MILS
separation kernel guarantees control of
information flow and data isolation. It
makes this guarantee for the first time at an
assurance level that was next to impossible
to achieve with the monolithic kernels. Due
to technology advances in both smaller cir-
cuits and increased functionality, we now
have processors powerful enough to handle
the context switching required for MILS,
while still maintaining system performance.

In the last 15 years, the number of con-

text switches per unit of time that a state-
of-the-art microprocessor can handle has
increased by a factor of 1,000. Processor
speed has increased by a factor of 100. The
number of transistors per cubic inch on a
wafer has increased by a factor of 125. We
can now perform 50,000 context switches
at a cost of 5 percent of the microproces-
sor clock. This 5 percent is the MILS secu-
rity and safety tax.

Because information originates only
from authorized sources, is delivered only
to the intended recipients, and the source is
authenticated to that recipient, the applica-
tion developer is empowered to build his or
her own reference monitors2 at the applica-
tion layer that include the following:
• Non-bypassable. Security functions

cannot be circumvented.
• Evaluatable. Security functions are

small and simple enough to enable rig-
orous proof of correctness through
mathematical verification.

• Always Invoked. Security functions
are invoked each and every time.

• Tamperproof. Security functions and
their data cannot be modified without
authorization, either by subversive or
poorly written code.
An acronym for these four attributes is

NEAT [9]. Security policy enforcement
that is not NEAT is not effective. Although
other operating systems have offered some
form of non-bypassability and tamper-
proof functionality, MILS provides
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NEATness for the first time in a COTS
package that is formally modeled and math-
ematically verified at a high assurance level.

Divide and Conquer
The duration, schedule risk, and cost of
evaluating, certifying, and deploying soft-
ware increase non-linearly with the size of
the code. These increases are especially
onerous at high levels of assurance. Guar-
anteed NEATness enables us to design a
MLS or Multiple Single Levels of Security
(MSLS)3 system as a set of independent
system high partitions with cross-domain
servers, downgraders, and guards enabling
secure communications both among those
partitions and also with external systems.

Another MILS objective is to enable
the evaluation and certification of a com-
plex system to be broken down into a num-
ber of independent, small evaluations.
Security-critical software components that
handle more than one level of information
can be evaluated at high levels of robust-
ness, approximately Evaluation Assurance
Level (EAL) 6+ of the Common Criteria,
an internationally approved set of security
standards [10]. Cross-domain servers,
downgraders, and guards, leveraging
NEATness, can be small and tightly
focused, making high-assurance evalua-
tions of those components practical,
achievable, and affordable. Single-level par-
titions, which each deal with only one level
of information, can be evaluated at medi-
um levels of robustness, approximately
EAL 4, which is practical and achievable
for large bodies of code. The independ-
ence of these evaluations also enables
reuse of code, reuse of application pro-
gramming interfaces (APIs), reuse of spec-
ifications, reuse of evaluation artifacts, and
reuse of certifications to the greatest
degree possible.

Connecting to Other Systems
MILS network components such as proto-
col stacks and their associated interface
device drivers can be put into partitions of
their own. This architecture has several
advantages:
• Network facilities can be used by multi-

ple application partitions.

• Network data is processed in unprivi-
leged user mode, eliminating a vulnera-
bility that is a common avenue of
attack.

• Complex protocol code such as
Internet Protocol (IP) Ver. 6 can be
evaluated and certified independent of
the applications using the code, en-
abling reuse of the evaluation artifacts.
Applications use an API to interact with

the network. The MILS network API can
have the same semantics as in a traditional
operating system such as the familiar
Transport Control Protocol/IP socket calls.
The API implementation difference can be
completely under the hood, transparent to the
application developer. Instead of interact-
ing directly with the protocol, a MILS sock-
et implementation uses the separation ker-
nel’s interpartition communications facility
to forward outgoing data to the protocol
stack. Incoming data is handled similarly in
the opposite direction.

Secure Network Systems
The network is the platform. The embed-
ded computer that is not connected to
another processor is a rare exception. By
enforcing its four foundational security
policies, MILS implements a robust infor-
mation assurance foundation in a single
node. We can then implement a robust
information assurance foundation through-
out a distributed system by providing end-to-
end enforcement of those same security
policies. End-to-end enforcement is pro-
vided by a high-assurance middleware com-
ponent called the Partitioning Communi-
cations System (PCS). Leveraging the sepa-
ration kernel’s guarantee of controlled
information flow within a single node, the
PCS is always interposed between an appli-
cation and the protocols/drivers that effect
an off-board data transfer. The configura-
tion is illustrated in Figure 2.

The PCS enforces the security policies
end-to-end by providing the following:
• Strong identity of each node within a

collection of MILS nodes (an enclave).
• Separation by level and/or community

of interest. Enclaves are then connect-
ed together via high-assurance MILS
cross-domain servers.

• Secure configuration, validating that all
security databases are consistent.

• Secure image loading.
• Secure clock synchronization.
• Provisioning of bandwidth and quality

of service.
• Suppression of covert channels.

Network Middleware Tools 
While we are developing new systems that

enable the warfighter to share information,
it is important to not reinvent the wheel.
Distributed system solution designers make
frequent use of COTS network middleware
for various application paradigms:
• Client/server, often using CORBA [11],

distributes logic.
• Publish/subscribe, often using DDS,

distributes data.
• Web-enabled services, using Hyper-

Text Transfer Protocol servers and
components such as Extensible Markup
Language; SOAP [Simple Object
Access Protocol]; Web Services
Description Language; Disco; Universal
Description, Discovery and Integration;
etc. that enable the communication
between large diverse distributed com-
munities of interest.
All of these technologies can be viewed

as tools that provide the application pro-
grammer with a higher level abstraction to
the rudimentary socket interface. Much of
the code for these networking middleware
technologies can either reside together in
the same partition as the application that it
supports, or it can reside in a partition by
itself. In either case, porting existing code
to a MILS environment is a straightforward
task because the socket API does not need
to change. The PCS still fits between the
network middleware and the protocol stack
and/or device drivers.

The system architect should not view
the use of CORBA, DDS, or Web services
as mutually exclusive. A single application
can use CORBA for remote invocation, for
distribution of logic, and for smart pull of
needed information; it can use DDS for
smart push of sensor data that is being mon-
itored; and it can use Web services as a
graphical interface for reports from one
large community of interest to another, e.g.,
the Army infantry reporting threat data and
the Air Force monitoring Web reports and
providing air support.

There is an interesting side benefit to
combining network middleware with the
PCS. One of the purposes of network
middleware is to make the number and
location of processors sharing traffic as
transparent as possible to the application.
At the same time, in a secure networked
system, we need to know exactly where
our data came from and where it will go.
Merging PCS functions with network mid-
dleware such as CORBA or DDS gives the
system designer the flexibility to relocate
system functions without introducing new
threats to data confidentiality or integrity.
This enables ad hoc networks and coali-
tions to be formed based on newly identi-
fied threat data, and to be dissolved as
soon as the threat is dealt with.
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Security is required when fielding sys-
tems that are either mission-critical or use
national information. At the same time,
there is a massive investment in applica-
tions using traditional operating systems
and traditional middleware. The MILS
architecture can provide a high-assurance
foundation for fielded systems while pre-
serving much of the legacy code base.

Guest Operating Systems
A traditional operating system, either an
embedded real-time operating system (e.g.,
INTEGRITY, VxWorks, or LynxOS) or a
desktop operating system (e.g., Linux,
Windows, or Solaris) can run inside a MILS
partition as a guest operating system. Operating
systems written with portability in mind
have a hardware abstraction layer (HAL)
that localizes all processor-specific func-
tions. Writing a new HAL is the major task
in porting to a new central processing unit.
You can use that same expertise to write a
HAL that abstracts the MILS separation
kernel as the hardware to the guest.

By itself, the guest operating system
concept enables legacy applications to be
easily ported to the high-assurance MILS
environment. Another possibility is that
multiple MILS partitions can each contain
an instance of the guest operating system.
This effectively creates multiple virtual
operating systems on a single real micro-
processor. The MILS separation kernel
provides trustworthy separation with respect
to both memory access and central pro-
cessing unit time. Communications among
the partitions is limited to those paths
explicitly created when the system was gen-
erated. This is a practical path to imple-
mentation of cross domain solutions. It is
also a practical path to implementation of
high-assurance workstations suitable for
MLS or coalition force operations.

For example, inside a partition the guest
operating system can run as a thin client; it
can be downloaded from a remote server.
Which remote server a thin client is down-
loaded from can be determined from a
token reader or crypto ignition key. The
token would indicate nationality, clearance,
and job title. The PCS would open a secure
connection to a server that the user, who
inserted and unlocked the token, was
authorized to communicate with. Access to
the local devices such as screen, keyboard,
mouse, hard drive, etc., would be provided
by the MILS workstation.

Supporting the Warfighter
The Air Force Research Laboratory
(Information Directorate), in cooperation
with the National Security Agency,

Department of Defense prime contractors,
academia, and software suppliers, is manag-
ing a MILS program to combine the best of
existing commercial standards for flight
safety and integrated modular avionics with
the following:
• DO-178B, Software Considerations in

Airborne Systems and Equipment
Certification, Level A [12].

• ARINC-653, Avionics Application
Software Standard Interface [13].
The program is also combined with

the following appropriate standards for
security:
• Common Criteria (International Or-

ganization for Standardization 15408),
EAL 6, augmented [10].

• Director of Central Intelligence Direc-
tive 6/3, Protecting Sensitive Compart-
mented Information Within Informa-
tion Systems, Protection Level 5 [14].
There is significant synergy among

these standards. While they each have a spe-
cific area of interest, there is a great deal of
common ground between safety-critical
and security standards with respect to
sound engineering practice, meeting
requirements, and having the plans in place
to address flaws.

The participating software suppliers
that are currently developing MILS separa-
tion kernels are, alphabetically, Green Hills
Software, Inc. [15], LynuxWorks, Inc. [16],
and Wind River Systems, Inc. [17].
Objective Interface Systems, Inc. [18] is
currently developing the partitioning com-
munications system.

Putting It All Together
MILS is all about keeping things separate
that need to be separate and doing so with
components that we can trust with our
most important data under the most severe
threat. For security, we are keeping data
separate by classification level, by commu-
nity of interest, and by nationality. For
safety, we are keeping applications separate
by level of criticality. All of this is done
with COTS software and certification arti-
facts that are reusable. Leveraging this
reusability makes MSLS/MLS system
development practical and certification/
accreditation affordable and achievable.
The end result is fielded systems that have
high-assurance foundations but do not
require custom-built security architectures
for each new system.

For more information about MILS,
please see <http://mils.ois.com>.u
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Notes
1. Orange book levels began with A1 and

moved down through levels B3, B2, B1,
C2, and C1.

2. A reference monitor is an Access
Control concept referring to an abstract
machine that mediates all accesses to
objects by subjects [3].

3. MSLS means there are multiple chan-
nels each with their own separate data
classification [9].
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